December 1, 2022

Photonic microwave generation using on-chip optical frequency combs

An EPFL research team led by Tobias J. Kippenberg has now demonstrated integrated soliton microcombs with repetition rates as low as 10 GHz. This was achieved by significantly lowering the optical losses of integrated photonic waveguides based on silicon nitride, a material already used in CMOS micro-electronic circuits, and which has also been used in the last decade to build photonic integrated circuits that guide laser light on-chip.

The scientists were able to manufacture silicon nitride waveguides with the lowest loss in any photonic integrated circuit. Using this technology, the generated coherent soliton pulses have repetition rates in both the microwave K- (~20 GHz, used in 5G) and X-band (~10 GHz, used in radars).

The resulting microwave signals feature phase noise properties on par with or even lower than commercial electronic microwave synthesizers. The demonstration of integrated soliton microcombs at microwave repetition rates bridges the fields of integrated photonics, nonlinear optics and microwave photonics.

The EPFL team achieved a level of optical losses low enough to allow light to propagate nearly 1 meter in a waveguide that is only 1 micrometer in diameter –100 times smaller than that a human hair. This loss level is still more than three orders of magnitude higher than the value in optical fibers, but represents the lowest loss in any tightly confining waveguide for integrated nonlinear photonics to date.

Such low loss is the result of a new manufacturing process developed by EPFL scientists – the “silicon nitride photonic Damascene process”. “This process, when carried out using deep-ultraviolet stepper lithography, gives truly spectacular performance in terms of low loss, which is not attainable using conventional nanofabrication techniques,” says Junqiu Liu, the paper’s first author who also lead the fabrication of silicon nitride nanophotonic chips at EPFL’s Center of MicroNanoTechnology (CMi). “These microcombs, and their microwave signals, could be critical elements for building fully integrated low-noise microwave oscillators for future architectures of radars and information networks.

The EPFL team is already working with collaborators in US to develop hybrid-integrated soliton microcomb modules that combine chip-scale semiconductor lasers. These highly compact microcombs can impact many applications, e.g. transceivers in datacenters, LiDAR, compact optical atomic clocks, optical coherence tomography, microwave photonics, and spectroscopy.

The work has been published in Nature Photonics.

Read more.